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ABSTRACT

We develop optimal finite-sample approximations for the band pass filter. These approximations

include one-sided filters that can be used in real time. Optimal approximations depend upon the

details of the time series representation generating the data. Fortunately, for U.S. macroeconomic

data, getting the details exactly right is not crucial. A simple approach, based on the generally

false assumption that the data are generated by a random walk, is nearly optimal. We use the tools

discussed here to document a new fact: there has been a significant shift in the money-inflation

relationship before and after 1960.

Band Pass Filter
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1. Introduction

Economists have long been interested in the different frequency components of data. For

example, business cycle theory is primarily concerned with understanding fluctuations in the range

from 1.5 to 8 years, whereas growth theory focuses on the longer run. In addition, some economic

hypotheses are naturally formulated in the frequency domain, such as Milton Friedman’s hypoth-

esis that the long-run Phillips curve is positively sloped, whereas the short-run Phillips curve is

negatively sloped. Another example is the proposition that money growth and inflation are highly

correlated in the long run and less correlated in the short run.2 Finally, certain frequency compo-

nents of the data are important as inputs into macroeconomic stabilization policy. For instance, a

policymaker who observes a recent change in output is interested in knowing whether that change

reflects a shift in trend (i.e., the lower frequency component of the data) or is just a transitory blip

(i.e., part of the higher frequency component).

The theory of the spectral analysis of time series provides a rigorous foundation for the

notion that there are different frequency components of the data. According to the spectral repre-

sentation theorem, any time series within a broad class can be decomposed into different frequency

components.3 The theory also supplies a tool for extracting those components: the ideal band pass

filter, which is a linear transformation of the data that leaves intact the components of the data

within a specified band of frequencies and eliminates all other components. The adjective ideal on

this filter reflects an important practical limitation. Literally, application of the ideal band pass

filter requires infinite data. Some sort of approximation is required.

In this paper, we characterize and study optimal linear approximations and compare these

with alternative approaches developed in the literature. The optimal approximation to the band

pass filter requires knowing the true time series representation of the raw data. In practice, this
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representation is not known and must be estimated. It turns out, however, that for standard

macroeconomic time series, a more straightforward approach that does not involve first estimating

a time series model works well. That approach uses the approximation that is optimal under the (in

many cases, false) assumption that the data are generated by a pure random walk.4 The procedure

is nearly optimal for the type of time series representations that fit U.S. data on inflation, output,

interest rates, and unemployment.

To illustrate the value of the filtering methodology studied here, we present an empirical

application to money growth and inflation. We document a substantial, statistically significant

shift in the money-inflation relationship before and after 1960. In the early period, the money-

inflation relationship is strong and positive at all frequencies. In the later period, the relationship

turns negative in frequencies 20 years and higher, although it remains positive in the very low

frequencies. To our knowledge, this intriguing change in the money-inflation relationship has not

been documented before.5 The example complements others in the literature by illustrating the

value of the band pass filter in isolating economically interesting features of the data.6 In addition,

we apply a bootstrap methodology to show that statistics based on the different frequency bands–

even bands as low as 8-20 years–can be estimated with precision.

The outline of the paper is as follows. Section 2 describes the simple filter approximation

that is optimal when the data are generated by a random walk. Section 3 considers a more general

class of time series representations. Section 4 studies the importance of several key properties of

our optimal filter approximations. For example, the weights in the optimal filter approximation

are not symmetric in future and past values of the data, and they vary over time. We evaluate

the importance of these features by considering filters that are optimal, subject to the constraint

that the weights are symmetric and constant over time. Section 5 presents our inflation and money
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growth application. Section 6 relates our analysis to the relevant literature. Here we stress the

important papers by Hodrick and Prescott (1997) (HP) and Baxter and King (1999) (BK). The

HP filter is sometimes used in a policymaking framework to develop a real-time estimate of the

trend component of aggregate output. Among other things, this section compares the real-time

performance of our filters with the HP filter. Section 7 concludes.

2. A Simple Approximation for Macroeconomic Time Series

Before proceeding to the more general analysis, we describe the filter approximation that is

optimal under the assumption that the data are generated by a random walk. We treat this case

separately because of its simplicity and its usefulness in practice. In particular, the derivation of

the optimal filter weights can be accomplished by a simple time-domain argument; the formulas for

the weights are so simple they can be computed by hand; and, as discussed in Section 4, the random

walk filter approximation is useful in practice, even for many data series that are not generated by

a random walk.

To explain what we mean by an optimal (linear) approximation, let yt denote the data

generated by applying the ideal, though infeasible, band pass filter to the raw data, xt. We

approximate yt by ŷt, a linear function, or filter, of the observed sample xt’s. We select the

filter weights to make ŷt as close as possible to the object of interest, yt, in the sense of minimizing

the mean square error criterion:

E
h
(yt − ŷt)2 |x

i
, x ≡ [x1, ..., xT ].(1)

Thus, ŷt is the linear projection of yt onto every element in the data set, x, and a different projection
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problem exists for each date t. Since the first-order condition associated with the minimization

problem in (1) is linear in the unknown filter weights, they can be obtained by straightforward

matrix manipulations.

The filter, which we call the Random Walk filter, is easily implemented as follows. Suppose

we want to isolate the component of xt with a period of oscillation between pl and pu, where

2 ≤ pl < pu < ∞.7 The Random Walk filter approximation of this component, ŷt, is computed as

follows:8

ŷt = B0xt +B1xt+1 + ...+BT−1−txT−1 + B̃T−txT(2)

+ B1xt−1 + ...+Bt−2x2 + B̃t−1x1

for t = 3, 4, ..., T − 2. In (2),

Bj =
sin (jb)− sin (ja)

πj
, j ≥ 1(3)

B0 =
b− a
π
, a =

2π

pu
, b =

2π

pl

and B̃T−t, B̃t−1 are simple linear functions of the Bj ’s.9 The formulas for ŷt when t = 2 and T − 1

are straightforward adaptations on the above expressions. The formulas for ŷ1 and ŷT are also of

interest. For example,

ŷT =

µ
1

2
B0

¶
xT +B1xT−1 + ...+BT−2x2 + B̃T−1x1(4)

where B̃T−1 is constructed using the analog of the formulas underlying the B̃j ’s in (2).10 The

expression for ŷT is useful in circumstances when an estimate of yT is required in real time, in
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which case only a one-sided filter is feasible.

Note from (2) that the weights in the Random Walk filter vary with time. Also, except for

t in the middle of the data set, the weights are not symmetric in terms of past and future xt’s.

It is easy to adjust the Random Walk filter weights to impose stationarity and symmetry, if these

features are deemed absolutely necessary. Simply construct (2) so that ŷt is a function of a fixed

number, p, of leads and lags of xt, and compute the weights on the highest lead and lag using

simple functions of the Bj ’s.11 This is the solution to our projection problem when xt is a random

walk and ŷt is restricted to be a linear function of {xt, xt±1, ..., xt±p} only. With this approach,

estimating yt for the first and last p observations in the data set is not possible. In practice, this

means restricting p to be relatively small, to, say, three years of data. This filter induces stationarity

in time series which have up to two unit roots, or which have a quadratic trend.

We emphasize a caveat regarding the Random Walk filter, (2)-(3). That filter does not

closely approximate the optimal filter in all conceivable circumstances. For cases in which the

appropriateness of the RandomWalk filter is questionable, we conjecture that the following strategy

is a good one. Estimate the time series representation of the data to be filtered, and then use the

formulas derived in the next section to compute the optimal filter based on the assumption that

the estimated time series representation is the true one.12 The formulas derived below apply for a

large class of time series models. It is straightforward to adapt the formulas so that they apply to

an even larger class.

3. Optimal Approximation to the Band Pass Filter

We begin this section by precisely defining the object that we seek: the component of xt

that lies in a particular frequency range. We then present formulas for computing the optimal
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approximation. Several examples are presented which highlight features of the optimal approxima-

tion.

Our approximation formulas can accommodate two types of xt processes. In one, xt has a

zero mean and is covariance stationary. If the raw data have a nonzero mean, we assume it has

been removed prior to analysis. If the raw data are covariance stationary about a trend, then we

assume that trend has been removed. We also consider the unit root case, in which xt − xt−1 is a

zero-mean, covariance-stationary process. If in the raw data this mean is nonzero, then we suppose

that it has been removed prior to analysis.13 As we will show, the latter is actually only necessary

when we consider asymmetric filters.

A. The Ideal Band Pass Filter. Consider the following orthogonal decomposition of the

stochastic process, xt:

xt = yt + x̃t.(5)

The process, yt, has power only in frequencies belonging to the interval {(a, b) ∪ (−b,−a)} ∈

(−π,π). The process, x̃t, has power only in the complement of this interval in (−π,π).14 Here,

0 < a ≤ b ≤ π. It is well known (see, e.g., Sargent 1987, p. 259) that

yt = B(L)xt(6)

where the ideal band pass filter, B(L), has the following structure:

B(L) =
∞X

j=−∞
BjL

j , Llxt ≡ xt−l
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where the Bj ’s are given by (3). With this specification of the Bj ’s, we have

B(e−iw) = 1, for w ∈ (a, b) ∪ (−b,−a)(7)

= 0, otherwise.

Our assumption, a > 0, together with (7), implies that B(1) = 0. Note from (6) that computing yt

using B(L) requires an infinite number of observations on xt. Moreover, it is not clear that simply

truncating the Bj ’s will produce good results.

We can show this in two ways. First, consider Figure 1a, which shows Bj for j = 0, ..., 200,

when a = 2π/96 and b = 2π/18. These frequencies, in monthly data, correspond to the business

cycle, that is, periods of fluctuation between 1.5 and 8 years. Note how the Bj ’s die out only for

high values of j. Even after j = 120, that is, 10 years, the Bj ’s remain noticeably different from zero.

Second, Figures 1b-1d show that truncation has a substantial impact on B(e−iw). They display the

Fourier transform of filter coefficients obtained by truncating the Bj ’s for j > p and j < −p for

p = 12, 24, and 36 (i.e., 1 to 3 years). These differ noticeably from B(e−iw).

B. A Projection Problem. Suppose we have a finite set of observations, x = [x1, ..., xT ] and

that we know the population second moment properties of {xt}. Our estimate of y = [y1, ..., yT ] is

ŷ, the projection of y onto the available data:

ŷ = P [y|x] .
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This corresponds to the following set of projection problems:

ŷt = P [yt|x] , t = 1, ..., T.(8)

For each t, the solution to the projection problem is a linear function of the available data:

ŷt =
pX

j=−f
B̂p,fj xt−j(9)

where f = T − t and p = t− 1 and the B̂p,fj ’s solve

min
B̂p,fj ,j=−f,...,p

E
h
(yt − ŷt)2 |x

i
.(10)

We can express this problem in the frequency domain by exploiting the standard frequency domain

representation for a variance:15

min
B̂p,fj ,j=−f,...,p

Z π

−π
|B(e−iω)− B̂p,f (e−iω)|2fx(ω)dω.(11)

Here, fx(ω) is the spectral density of xt, and

B̂p,f (L) =
pX

j=−f
B̂p,fj Lj , Lhxt ≡ xt−h.

We stress three aspects of the B̂p,fj ’s which solve (11). First, the presence of fx in (11)

indicates that the solution to the minimization problem depends on the properties of the time

series representation of xt. This stands in contrast to the weights in the ideal band pass filter,

which do not depend on the time series properties of the data.
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Second, since the minimization problem depends on t, this strategy for estimating y1,

y2, ..., yT uses T different filters, one for each date. In particular, the filters are not stationary

with respect to t, and for each t they weight past and future observations on xt asymmetrically.16

In practice, we could impose stationarity and symmetry on (11). Stationarity may have economet-

ric advantages. Symmetry ensures that no phase shift exists between ŷt and yt. Still, stationarity

and symmetry come at a cost. In general, these properties represent binding restrictions on (11),

so that imposing them on the filter approximation results in a less precise estimate of yt. One of

our objectives is to quantify the severity of this trade-off in settings that are of practical interest.

Third, in practice the true spectral density for xt is not known. Presumably, the solution to

(11) would be different if uncertainty in fx were explicitly taken into account. Doing so is beyond

the scope of this paper. In any case, our results suggest that, for typical macroeconomic data series,

reasonable approximations to the solution can be obtained without knowing the details of the time

series representation of xt.

C. Solution to the Projection Problem. The quadratic nature of (11), together with linear-

ity in (9), guarantees that the solution to (11) has a simple representation. In particular, the B̂p,fj ’s

solve a system of linear equations. Here, we derive this system of equations for a particular class

of spectral densities, fx.

We consider spectral densities corresponding to xt processes which have the following time

series representation:

xt = xt−1 + θ(L)εt, Eε
2
t = 1(12)

where θ(L) is a qth-ordered polynomial in the lag operator, L. The corresponding spectral density
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is

fx(ω) =
g(ω)

(1− e−iω)(1− eiω)

where

g(ω) = θ(e−iω)θ(eiω)

= c0 + c1
³
e−iω + eiω

´
+ ...+ cq

³
e−iωq + eiωq

´
.

The class of time series representations in (12) encompasses the case where xt is stationary (i.e.,

θ(1) = 0), possibly because a trend has already been removed from the raw data, and where xt is

difference-stationary (i.e., θ(1) 6= 0). In the stationary case, xt = [θ(L)/(1− L)] εt = θ̃(L)εt, where

θ̃(L) is a (q − 1)-ordered polynomial in L.

We treat the difference-stationary case below. A straightforward adaption of our argument

can be used to address the stationary case. See Christiano and Fitzgerald (1999) for details. We

presented the solution to (11) when xt is a random walk (i.e., q = 0) in Section 2.17 We now

consider q > 0.

A necessary condition for an optimum is B̂f,p(1) = 0; otherwise, the criterion in (11) would

be infinite. This implies that b(z) is a finite-ordered polynomial, where

b(z) =
B̂f,p(z)

1− z

and

b(z) = bp−1zp−1 + bp−2zp−2 + ...+ b0 + ...+ b−f+1z−f+1 + b−fz−f .
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The link between the bj ’s and the B̂
f,p
j ’s is expressed in matrix form as follows:

QB̂f,p = b(13)

where Q is a (p+ f)× (p+ f +1) matrix and b and B̂f,p are (p+ f)× 1 and (p+ f +1)× 1 column

vectors:

Q =



−1 0 0 · · · 0 0

−1 −1 0 · · · 0 0

−1 −1 −1 · · · 0 0

...
...

...
. . .

...
...

−1 −1 −1 · · · −1 0


, b =



bp−1

bp−2

bp−3

...

b−f


, B̂f,p =



B̂f,pp

B̂f,pp−1

B̂f,pp−2
...

B̂f,p−f


.(14)

We suppose that p+ f > 0, p ≥ 0, f ≥ 0 and q is small, in the sense that p+ f ≥ 2q.18

We rewrite (11) as an optimization problem in the bj ’s:

min
bj ,j=p−1,...,−f

Z π

−π
|B̃(e−iω)− b(e−iω)|2g(ω)dω(15)

where

B̃(z) =
B(z)

1− z .

The first-order conditions for this problem are

Z π

−π
B̃(e−iω)g(ω)eiωjdω =

Z π

−π
b(e−iω)g(ω)eiωjdω(16)

j = p− 1, ...,−f. (See the Appendix for details.)
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Expression (16) is a system of p+f linear equations in the B̂f,pj ’s. The (p+f +1) equation

is obtained from B̂f,p(1) = 0. To solve for the p+ f +1 unknown B̂f,pj ’s, it is convenient to express

(16) in matrix form:19 Z π

−π
B̃(e−iω)g(ω)eiωjdω = 2πFjQB̂f,p.(17)

Here, Fj is a 1× (p+ f) dimensional row vector, j = p− 1, ...,−f. For p− q − 1 ≥ j ≥ q − f ,

Fj =

 0, ..., 0| {z }
1×(p−q−1−j)

, c, 0, ..., 0| {z }
1×(j−q+f)

(18)

where c = [cq, cq−1, ..., c0, ..., cq−1, cq] . When j = p − q − 1, the first set of zeros is absent in Fj ,

and when j = q − f, the second set of zeros is absent. When j > p− q − 1, the first set of zeros is

absent in Fj and the first j − (p− q− 1) elements of c are absent too. When j < q− f, the last set

of zeros is absent in Fj and the last q − f − j elements of c are absent too.

Combining the p+ f equations in (17) with B̂f,p(1) = 0, we obtain

d = AB̂f,p(19)

where

d =



R π
−π B̃(e

−iω)g(ω)eiω(p−1)dω

...

R π
−π B̃(e

−iω)g(ω)eiω(−f+1)dω

R π
−π B̃(e

−iω)g(ω)eiω(−f)dω

0


, A = 2π



Fp−1Q

...

F−f+1Q

F−fQ

1 · · · 1


(20)

and the square matrix, A, has dimension p+ f +1. It is straightforward to compute the objects in
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A.

We now discuss the computation of the integrals that make up d. Note that

Z π

−π
B̃(e−iω)g(ω)e−iωjdω =

Z π

0

h
B̃(e−iω)e−iωj + B̃(eiω)eiωj

i
g(ω)dω(21)

=

Z b

a

"
e−iωj

1− e−iω +
eiωj

1− eiω
#
g(ω)dω

= R(j),

for, say, j = 1− p, 2− p, ..., f. We compute R(j) using a particular recursive procedure based on

three relations. The first is an expression for R(0):20

R(0) =

Z π

−π
B̃(e−iω)g(ω)dω =

Z π

−π
B(e−iω)g(ω)dω.(22)

The second relation is

R(j)−R(j + 1) =

Z b

a

"Ã
e−iωj

1− e−iω +
eiωj

1− eiω
!
−
Ã
e−iω(j+1)

1− e−iω +
eiω(j+1)

1− eiω
!#
g(ω)dω

=

Z b

a

h
e−iωj + eiωj

i
g(ω)dω

=

Z π

−π
B(e−iω)g(ω)e−iωjdω.(23)

The third relation is

Z π

−π
B(e−iω)g(ω)eiωjdω = 2π

Ã
Bjc0 +

qX
i=1

h
B|j|+i +B||j|−i|

i
ci

!
.(24)

Expressions (22)-(24) can be used in an obvious way to compute R(j) for j = 1 − p, ..., f. The

vector d is then obtained from (20) and (21).
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Finally, we solve for the B̂f,pj ’s using

B̂f,p = A−1d.(25)

It is easy to verify that when q = 0, this solution coincides with the solution reported earlier. In

addition, when p = f, B̂p,p(L) is a symmetric polynomial.

D. Examples. The key to understanding the solution to (11) is to note that for finite p and

f, we cannot construct B̂p,f (e−iω) so that B̂p,f (e−iω) = B(e−iω) for all ω. The two functions can

be made close over some subintervals, but only at the cost of sacrificing accuracy over other subin-

tervals. This trade-off implies that we need some weighting scheme to determine which intervals to

emphasize in constructing B̂p,f (e−iω). The weighting scheme implicit in our optimization criterion

is the spectral density of xt. The reason for this is that the optimization problem seeks to make

yt and ŷt as close as possible, and this translates into making the product of B and fx similar to

the product of B̂p,f and fx. Thus, the optimization criterion chooses the B̂
p,f
j ’s so that B̂p,f (e−iω)

resembles B(e−iω) closely for values of ω where fx(ω) is large and places less emphasis on regions

where fx is relatively small. We illustrate this principle using three examples, with p = f = 12,

pu = 24, and pl = 4. They tilt the graph of fx(ω), ω ∈ (0,π) in different ways.

In our first example, the IID case, fx is constant for all ω. This is a natural benchmark, be-

cause in this case, the B̂p,fj ’s are just the ideal filter weights, Bj , truncated. The objects, B̂p,f (e−iω)

and B(e−iω), are shown in Figure 2a. The next two examples allocate increasing power toward

the low frequencies. Accordingly, for our second example, the Near IID case, we perturb fx from

the first example by placing a spike at frequency zero.21 This is of interest, in part, because, as

we discuss later, it rationalizes the widely cited filter proposed in BK. In this case, the B̂p,f ’s are
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obtained by adjusting all of the B̂p,f ’s in the IID case by a constant to ensure that B̂p,f (1) = 0.

Note in Figure 2a how, relative to the IID case, the Near IID case lifts up B̂p,f (e−iω) in the

neighborhood of ω = 0.

The third example is the Random Walk case. Now, optimality dictates truncating the ideal

band pass filter and then adjusting only the highest order terms to ensure that B̂p,f (1) = 0. In

this case, fx assigns high weight in a larger neighborhood of ω = 0 than in the Near IID case.

Figure 2b shows that the Random Walk B̂p,f (e−iω) is more accurate in a larger region of ω = 0, at

the cost of doing relatively poorly for higher ω. These examples show how shifting power toward a

particular frequency range causes the optimal filter to become more accurate in that range, at the

expense of doing poorly elsewhere.

4. Properties of the Optimal Approximation

The purpose of this section is to explore several aspects of the solution to the projection

problem, (11). We examine the role of asymmetry and time nonstationarity of the B̂p,f ’s. We do

this by solving the projection problem under various constraints. In the most constrained version,

we impose stationarity and symmetry by setting p = f and holding p constant for all t. We then

relax stationarity by letting p be as large as possible for each t. After that, we relax symmetry by

allowing p 6= f and letting both p and f be as large as possible for each t. Finally, we ask how crucial

it is to know the details of the time series representation of xt. In particular, we investigate whether

the filter described earlier–the one which assumes a random walk xt–works well for nonrandom

walk processes.

Clearly, the results of our analysis depend on the actual time series properties of xt, as

summarized by fx. To make the analysis interesting, we consider difference-stationary and trend-
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stationary time series representations that fit standard U.S. macroeconomic data.

Our findings are as follows. First, we find that nonstationarity and asymmetry are useful in

minimizing (1), with nonstationarity relatively more important. These gains reflect that allowing

nonstationarity and asymmetry substantially increases the amount of information in x that can

be used in estimating yt. Second, we show that the degree of nonstationarity in the optimal filter

approximation is quantitatively small.22 We do this by demonstrating that second-moment statis-

tics of ŷt do not vary much with t. Third, we show that the degree of asymmetry in the Random

Walk filter is small. We do this by showing that the dynamic cross correlation function between

ŷt and yt is nearly symmetric about zero, even for t near the beginning of the data set.23 Finally,

we find that the gain from using the true time series representation of xt to compute ŷt, rather

than proceeding as though xt were a random walk, is minimal in practice. These findings underlie

our view that an adequate, though perhaps not optimal, procedure for isolating frequency bands

in macroeconomic time series is to proceed as if the data were a random walk and use filters that

are optimal in that case.

We begin by describing the time series models used in our analysis. We then study the

properties of the solution to (11) for these models. The models are difference-stationary. In

Christiano and Fitzgerald (1999), we show that our essential results hold, even if we adopt trend-

stationary time series representations that fit U.S. macroeconomic data well. In particular, we find

that our Random Walk filter is nearly optimal.

We estimated time series models of the form (12) for four data sets often studied in macroe-

conomic analysis. In each case, we fit a model to the monthly, quarterly, and annual data. The

variables, xt, considered are inflation, output (GDP for the annual and quarterly frequencies and

industrial production for the monthly), the interest rate (measured by the 3-month return on U.S.
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Treasury bills), and the unemployment rate. Inflation is measured as the first difference of the log

of the consumer price index (CPI); the rate of interest is measured as the logarithm of the net rate;

and output is transformed using the logarithm. The data set covers the period 1960-1997. Since

the results based on these time series representations are similar, we do not reproduce them all

here. (See Christiano and Fitzgerald 1999 for details.) Instead, we present results based on the

time series model estimated using monthly inflation data. We chose this representation because it

provides the weakest support for our contention that the Random Walk filter is close to optimal.

The estimated representation is

(1− L)xt = εt − 0.75εt−1, Eε2t = 0.00212

where xt = log(CPIt/CPIt−1).

We evaluate various procedures for computing ŷt under a variety of specifications of the

time series representation for xt and various data sampling intervals and frequency bands. We

compare ŷt and yt using corrt(ŷt, yt−τ ) and (V art(ŷt)/V ar(yt))1/2 , for various t and τ . Here, corr

and V ar correspond to the correlation and variance of the indicated variables.24 These statistics

are closely related to our optimization criterion, and for τ 6= 0 they allow us to assess the degree

of asymmetry in filters. The procedures we consider are listed in Table 1. Comparison of Optimal

Symmetric and Optimal Fixed procedures lets us assess the importance of time-stationarity in the

filter. Comparison of Optimal and Optimal Symmetric procedures lets us assess the importance of

symmetry. Comparison of Optimal and Random Walk procedures lets us assess the importance of

getting the details of the time series representation of xt just right.

We now summarize the results obtained using the inflation representation presented above,
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and using the Near IID representation described in Section 3. We consider three frequency bands:

1.5 to 8 years, 8 to 20 years, and 20 to 40 years.

Figure 3 shows the results based on the monthly inflation time series representation. The

first, second, and third columns of the figure provide information on corrt(ŷt, yt), [V art(ŷt)/

V ar(yt)]
1/2, and corrt(ŷt, yt−k), respectively. We report results for t = 1, ..., 240, since statis-

tics are symmetric across the first and second halves of the sample. The first, second, and third

rows in the figure correspond to three frequency bands: 1.5 to 8 years, 8 to 20 years, and 20 to

40 years, respectively. Each panel in the first column contains four curves, differentiated according

to the procedure used to compute ŷt: Optimal, Random Walk, Optimal Symmetric, and Optimal

Fixed. Results for Optimal and Random Walk are presented for t = 1, ..., T/2. Results for Optimal

Symmetric and Optimal Fixed are presented for t = 37, ..., T/2, since we set p = f = 36. Here,

T = 480, which is slightly more than the number of monthly observations used to estimate the time

series representation for inflation. The second column contains results for Optimal and Random

Walk alone. Here, results for Optimal are simply repeated for convenience from the first column.

For filters that solve a projection problem, the correlation and relative standard deviation coincide.

Finally, the third column reports corrt(ŷt, yt−k) using Random Walk for five values of t: t = 1, 31,

61, 121, and 240. In each case, k ranges from −24 to 24. Also, the location of k = 0 is indicated by

a “+.”

The main findings in Figure 3 are as follows. First, the efficiency differences between

Random Walk and Optimal are very small (column 1). A minor exception to this can be found in

the business cycle frequencies for t = 4, ..., 11. For these dates, the difference between corrt(ŷt, yt)

based on Optimal and Random Walk is between 0.08 and 0.12. Although these differences are

noticeable, they do not seem quantitatively large. Moreover, the differences between Random Walk
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and Optimal are barely visible when the analysis is based on time series representations fit to the

other macroeconomic time series discussed above.

Second, imposing symmetry (Optimal Symmetric) results in a relatively small loss of effi-

ciency in the center of the data set, but that loss grows in the tails.

Third, imposing stationarity in addition to symmetry (Optimal Fixed) results in a noticeable

loss of efficiency throughout the data set. However, the efficiency losses due to the imposition of

symmetry and stationarity are comparatively small in the business cycle frequencies. They are

dramatic in the lowest frequencies.

Fourth, ŷt based on Optimal and Random Walk appears to be reasonably stationary, except

in an area near the tails. This tail area is fairly small (about 1.5 years) for the business cycle

frequencies, but it grows for the lower frequencies (columns 1 and 2). It is interesting to note

that, for Optimal, V art(ŷt) falls in the tail area. This pattern holds for all optimal estimates of

ŷt reported in this paper. The intuition is simple. Recall that ŷt is the solution to the projection

of yt onto the data. By the smoothing properties of projections, we expect the variance of ŷt to

be smaller than that of yt. These two variables differ to the extent that the pre- and post- sample

observations on xt play an important role in yt. This implies that in the middle of a fairly large

data set, yt and ŷt will be quite similar. So, in this case we expect the variance of ŷt to be only a

little smaller than the variance of yt. However, at the beginning and the end of a data set, there is

a substantial missing data problem. For data points like this, we expect the smoothing properties

of projections to be particularly important, implying that the variance of ŷt is substantially below

that of yt.

Fifth, Random Walk seems to imply very little asymmetry in the cross correlations between

ŷt and yt (column 3). The degree of symmetry in these cross correlations is notable. It is particularly
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surprising in the case of t = 1, when B̂p,f is one-sided.

We conclude from these results that the noticeable efficiency gains obtained by filters that

use all the data come at little cost in terms of nonstationarity and asymmetry. However, the gains

of going from a simple procedure like Random Walk to Optimal are quite small.

These findings apply to the time series representations fit to the four macroeconomic time

series discussed above. The conclusions obviously do not hold up in all conceivable circumstances.

When we analyzed the Near IID case, we found some evidence against the proposition that

Random Walk is nearly optimal and roughly stationary. (See Christiano and Fitzgerald 1999 for

details.) However, Random Walk continues to dominate Optimal Fixed, and it is nearly optimal

in the business cycle frequencies, outside of tail areas. In addition, our other conclusions continue

to hold: Optimal is still nearly stationary outside of tail areas and imposing symmetry and time-

stationarity on the filter results in noticeable efficiency costs in the low frequencies.

5. Application to Inflation and Money Growth

We illustrate the use of our recommended filter using data on inflation and money growth.

We apply a bootstrap methodology to assess the statistical significance of correlations based on

filtered data. We divide the annual data on CPI inflation and M2 money growth for the period

1900-1997 into two parts: data covering 1900-1960 and data covering 1961-1997. The data are

broken into three sets of frequencies: those corresponding to 2-8 years (the business cycle), 8-20

years, and 20-40 years. Figures 4a-4d show results for the pre-1960 period, and Figures 5a-5d show

results for the post-1960 period.

We find that in the pre-1960 period, the two variables move together closely in all frequency

bands. The relationship remains positive in the low frequencies in the post-1960 data. However,
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in the business cycle and 8-20 year frequencies, there is a substantial and statistically significant

change. The positive relationship between inflation and money growth in the early period can be

seen in Figure 4a, which shows the raw data. Figures 4b-4d indicate that this positive relationship

holds in all frequency components. This is confirmed by the results in Table 2, which show that the

correlations are positive and statistically significantly different from zero in each frequency band.25

Figures 5a-5d show the same data for the post-1960 period. Note first that the point

estimate of the correlation between inflation and money growth in the 20-40 year frequency band is

quite similar across the two periods. This is consistent with the notion that the relationship has not

changed in the very lowest frequencies. However, the correlation in the later period is imprecisely

determined, and so this failure to reject could reflect low power. The difficulty in pinning down

the correlation in the later period is not surprising, given the relatively short span of the post-1960

data set. Still, we are impressed by the similarity in the low frequencies between the two data sets.

Now consider the correlations in the higher frequencies, which are estimated precisely. Note

the striking change in the relationship between the variables at these frequencies. Inflation and

money growth are now strongly and statistically significantly negatively correlated. Table 2 offers

another way to see this. The numbers in square brackets are p-values for a test of the null hy-

pothesis that the business cycle and 8-20 year correlations in the post-1960 data coincide with the

corresponding pre-1960 correlation. That null hypothesis is strongly rejected. An interpretation of

the change is that in these frequencies, inflation now lags money growth by a few years. We think

that the change in the dynamic relationship between inflation and money growth is an interesting

phenomenon.
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6. Comparison with Other Filters

This section compares our band pass filter approximations with other filtering approaches

used in the literature. These alternatives include the HP filter and the band pass filtering approach

recommended by BK. In addition, we consider the band pass approximation based on regressing

data on sine and cosine functions, as described in Hamilton (1994, pp. 158-163) and Christiano

and Fitzgerald (1998, Appendix). We call this last filter the Trigonometric Regression filter. Our

analysis is based on time series representations fit to the four macroeconomic data series discussed

in Section 4.

We find that, in terms of our optimality criterion, the RandomWalk filter dominates the BK

and Trigonometric Regression filters. The differences are most pronounced for filter approximations

designed to extract frequencies lower than the business cycle.

Our comparison of the Random Walk and HP filters is inspired by one interpretation of

the HP filter, according to which it approximates a particular high pass filter.26 We show that our

Random Walk filter delivers a better approximation to that high pass filter than the HP filter does.

Although the Random Walk filter is a better approximation to a high pass filter than is

HP, Christiano and Fitzgerald (1999) show that the improvement is not large enough to produce

quantitatively large differences in the sort of statistics business cycle analysts are typically interested

in. In this sense, we view our results as confirming the value of the HP filter as a device for extracting

the business cycle and higher frequency components in quarterly data. So why might a researcher

who already uses the HP filter be interested in the band pass filter? The key advantage of the band

pass filter is that it expands the range of questions we can explore. By suitably tuning a band pass

filter, we can ask questions involving different frequency components of the data.27 This feature

of the band pass filter is what allowed us to do the analysis in Section 5. This type of analysis is
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not feasible with the HP filter. Another advantage of the band pass filter is that the adjustments

necessary for handling monthly or annual data are quite natural. Dealing with alternative data

sampling intervals is problematic for the HP filter.28

Finally, this section also evaluates the filters from the perspective of the covariance-station-

arity properties of ŷt. For both HP and Random Walk, the second-moment properties of ŷt appear

to be approximately constant with respect to t, outside of tail areas. On this dimension, the

performance of the HP and Random Walk filters is similar to the BK filter, which produces a

ŷt that is exactly covariance-stationary. In contrast, the ŷt associated with the Trigonometric

Regression filter exhibits significant departures from covariance-stationarity.

A. The Baxter-King Filter. We first summarize the differences between the BK filter ap-

proximation strategy and our strategy. We then compare the performance of BK with filters

obtained using our strategy.

The Baxter-King Approximation Strategy

The filter proposed by BK is the fixed-lag, symmetric filter defined in subsection D of Section

3.29 They arrive at this approximation by choosing the filter weights to minimize the unweighted

integral of the squared approximation error, |B̂p,p(e−iω)− B(e−iω)|2, over ω ∈ (−π,π), subject to

the constraint B̂p,p(1) = 0. They impose the constraint on the grounds that if it were not imposed

and B̂p,p(L) is applied to a trending series, the result has a trend too.

The BK approximation strategy differs from ours in three respects. First, our strategy is

to choose the approximation so that ŷt and yt are as close as possible. This leads to the criterion

in (11), in which the squared approximation errors, |B̂p,f (e−iω) − B(e−iω)|2, are weighted by the
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spectral density of the data being filtered. Second, in our approach B̂p,f (1) = 0 is never imposed as

a constraint. It emerges as a feature of the solution if the data contain a unit root. In view of these

two differences, it is not surprising that our approximation strategy in general leads to a different

filter than does the BK strategy. Only in exceptional cases will the two produce the same result.

For example, they do so if xt is generated by the Near IID representation discussed in Section 3.

Third, because our strategy uses all the data for each t, we allow p and f to vary with t and to be

different from each other.

Filter Performance

We found that our Random Walk filter dominates the BK filter for the four macroeconomic time

series models described in Section 4 and for the Near IID case. The primary reason for this is that

the Random Walk filter fully exploits the entire data set. For example, the Random Walk filter

dominates even in the Near IID case when the BK filter is the optimal fixed-lag, symmetric filter.

(Recall the discussion in Section 4.) Despite this finding, the differences we found are quantitatively

small for standard statistics based on the business cycle frequencies. (See Christiano and Fitzgerald

1999 for additional evidence on this.) However, they are large for statistics based on lower frequency

components of the data. For example, when data are generated using a time series model that fits

the monthly U.S. time series on inflation, then BK does a poor job of extracting the 8-20 year

component of inflation. To see this, recall that BK is worse than Optimal Fixed, which understates

the standard deviation of the 8-20 year component of inflation by one-half.30 In the Near IID

case, when BK is Optimal Fixed, Christiano and Fitzgerald (1999) report that BK understates this

standard deviation by around two-thirds. This poor performance of BK in the lower frequencies

makes it ill-suited for the type of application studied in Section 5.
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Of course, BK would probably work better if both p and f were increased when extracting

lower frequency components of the data. But this introduces its own practical problems. First,

increasing p and f requires throwing away more data at the beginning and the end of a data set.

Second, the proper criterion for choosing p and f is not clear. These complications are completely

sidestepped by a procedure like our Random Walk, which uses all the data all the time.

B. The Hodrick-Prescott Filter. We evaluate the HP filter as a high pass filter that isolates

frequencies 8 years and higher in the data.31 We pay particular attention to the relative performance

of Random Walk and HP near the end of a data sample. This allows us to evaluate the real-time

performance of the two filters. We use time series representations fit to quarterly data on the

unemployment rate, log GDP, and inflation (CPI).32 We use quarterly data because this is the

frequency often used in practice.

The discussion that follows is divided into two parts. We begin with the evidence on ŷt in

columns 1 and 2 of Figure 6, ignoring the first 2-5 years’ observations. We then focus separately

on the latter observations and on the information in column 3, because this allows us to assess

the real-time performance of the filters. While the HP filter performs reasonably well outside the

tails, its performance near the endpoints is relatively poor. However, even the optimal procedure

is relatively unreliable near the endpoints.33

Performance Outside the Tail Areas

The first column in Figure 6 shows corrt(ŷt, yt) associated with the HP, RandomWalk, and Optimal

Fixed filters for t = 1, ..., 80 and for the indicated three quarterly time series models. We do not show

these statistics for the Optimal filter, because they are virtually indistinguishable from Random
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Walk. Even though HP uses all the data, it nevertheless performs slightly less well than Optimal

Fixed. It also performs less well than Random Walk, particularly for the time series representations

associated unemployment and GDP. However, the differences are not dramatic. For the Random

Walk filter, corrt(ŷt, yt) exceeds 0.95 and is often in the neighborhood of 0.99. The corresponding

magnitude for the HP filter is a little below 0.90.

The results in column 2 indicate little difference between the two filters. The HP filter

slightly overstates the variance of yt, whereas the Random Walk filter slightly understates it.

Note how, apart from tail areas, the curves in columns 1 and 2 are reasonably flat. This

is consistent with the notion that both filters produce data that are reasonably consistent with

covariance-stationarity.

For later purposes, it is convenient to introduce another statistic for comparing HP filter

and RandomWalk. Let Rt denote the absolute size of the typical estimation error, ŷt−yt (measured

by its standard deviation), to the absolute size of the typical value of yt (measured by its standard

deviation):34

Rt =

·
V art(ŷt − yt)
V ar(yt)

¸1/2
.

A large value of Rt indicates a poor filter approximation. In the extreme case when Rt is greater

than or equal to unity, then the filter approximation is literally useless. In this case, we can do just

as well, or better, estimating yt by its mean with ŷt ≡ 0. When we apply the Random Walk filter

to the time series representations fit to unemployment, GDP, and inflation, we find that Rt is no

greater than 0.31 if we ignore the first two years’ data. In the case of the HP filter, this number

is 0.49 for unemployment and GDP and around 0.37 for Inflation. These results complement the

findings above. Outside of the tail areas, Random Walk outperforms the HP filter, though not by

27



a lot.

Real-Time Performance

We now investigate the effectiveness of the HP, RandomWalk, and Optimal filters in the tail areas of

the data. This is of interest when real-time estimates of yt are desired. One example is stabilization

policy, when real-time estimates of the output and unemployment gaps are of interest.35 In practice,

some analysts estimate these gaps using the HP filter. One interpretation is that they define gaps

as the sum of the business cycle and higher frequency components of the data.36

At the outset, it should be clear that estimating the current value of yt is likely to be a

difficult task. In practice, it is hard to say without the benefit of hindsight whether a given change

in a variable is temporary (i.e., part of yt) or more persistent (i.e., part of x̃t). So we can expect

that even our best real-time estimates of yt will be disappointing. This is indeed the case for the

Random Walk and HP filters. However, we show that the estimate based on HP is of lower quality

than the one based on Random Walk.

We are interested in the accuracy of ŷT in estimating yT . However, the results in the first

two columns in Figure 6 pertain only to the first half of the data set. By symmetry, the second

half is the mirror image of the first half. So statistics for ŷT correspond to those reported for ŷ1.37

Note that the correlation between ŷt and yt is relatively low for t = T for both the Random Walk

and the HP filters. For example, in the case of Random Walk, the correlation is roughly 0.65 for

each of our three time series representations. (See the first column in Figure 6.) This implies that

ŷT accounts for only about 40 percent of the variation in yT . This is a substantial deterioration

relative to the results obtained for t closer to the middle of the data set.

The second column in Figure 6 turns up some evidence of differences in the performance of
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the RandomWalk and HP filters. Consistent with the fact that RandomWalk is nearly optimal, we

see that V arT (ŷT ) is small relative to V art(ŷt) for 1 < t < T. As discussed in Section 4, we interpret

this as reflecting the smoothing properties of projections and the fact that there is relatively little

information about yt at the end of the data sample. The relatively low variance of ŷT indicates

that the trend implied by ŷt moves more closely with the raw data for observations near the end

of a sample than for observations in the middle.38 In contrast, V arT (ŷT ) implied by HP is large

relative to V art(ŷt) for 1 < t < T when the data are generated by the output and inflation time

series representations.39 So in the case of these time series representations, the trend implicit in HP

appears to move less closely with the raw data at the end of the data sample than in the middle.40

We now compare the Random Walk and HP filters using the Rt statistic for t = T.With the

Random Walk filter, RT = 0.77, 0.78, and 0.69 for GDP, unemployment, and inflation, respectively.

Note that these numbers are substantially larger than they are for data points closer to the middle

of the sample. Still, they indicate that Random Walk provides at least some information about yT .

Now consider the HP filter. For GDP, RT = 1.01. For unemployment and inflation, RT is 1.03 and

0.80, respectively. Evidently, these statistics indicate that the Random Walk filter dominates the

HP filter in real time. Moreover, for purposes of estimating the GDP and unemployment gaps in

real time, the HP filter is worse than useless.41 The estimate, ŷT = 0, produces a smaller error

than using the HP filter estimate, ŷT .

The statistics on the real-time properties of the filters that we have just considered abstract

from scale. The evidence in the third column in Figure 6 exhibits the magnitude of the error in

real-time gap estimates for our variables. We consider the standard deviation of the error, yt − ŷt,

for a fixed date, t = 160. Specifically, we study [V arT (ŷ160 − y160)]1/2 for T = 160, 161, ..., 200,

based on the Random Walk, Optimal, and HP filters.42 These results allow us to quantify the
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benefit of hindsight when estimating yt.

Several things in the third column in Figure 6 are worth emphasizing. First, the Random

Walk and Optimal filters essentially coincide, and both dominate the HP filter. Second, the error

in estimating y160 declines by roughly one-half in the first year (i.e., four observations) after t =

160. Thereafter, further declines in the error come more slowly. Third, the error of the HP filter

asymptotes to a relatively high level. The reason is that, as the size of the data set grows, the

HP filter does not asymptote to the ideal band pass filter. By contrast, both Random Walk and

Optimal do. If T were allowed to grow indefinitely, [V arT (ŷ160 − y160)]1/2 would shrink to zero for

Random Walk and Optimal. Figure 6 suggests that a large value of T is required. These results

are the basis for our conclusion that the Random Walk filter is nearly optimal and outperforms the

HP filter in real time.43

C. The Trigonometric Regression Filter. We now discuss the Trigonometric Regression

filter. This filter makes use of the entire data set, x1, ..., xT , to estimate each yt, as follows:

ŷt = Bt(L)xt, t = 1, ..., T

where

Bt(L)xt =
t−1X
l=t−T

 2T X
j∈J

cos (ωjl)

xt−l, if T2 /∈ J(26)

=
t−1X
l=t−T

 2T
X

j∈J,j 6=T
2

cos (ωj l) +
1

T
cos (π(t− l)) cos(πt)

xt−l, if T2 ∈ J
t = 1, ..., T, ωj =

2π

T
j.
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Here, J indexes the set of frequencies we want to isolate and is a subset of the integers 1, ..., T/2.44

It is easy to see that Bt(1) = 0, so that Bt(L) has a unit root for t = 1, 2, ..., T.45 Evidently, Bt(L)

has a second unit root for t only in the middle of the data set, when Bt(L) is symmetric.46 For this

reason, it is important to drift-adjust xt prior to filtering.

Our basic finding is that when the data are generated by the time series representations

discussed in Section 4, the performance of the Trigonometric Regression filter is worse than that

of Random Walk. Since the results based on these time series representations are fairly similar, we

present only those based on the data-generating mechanism for inflation. These results are shown

in Figure 7, which has the same format as Figure 3. The results for Random Walk and Optimal

in Figure 7 correspond to those reported in Figure 3, and are reproduced here for convenience.

In column 1 in Figure 7, we see that in terms of corrt(ŷt, yt), Trigonometric Regression is outper-

formed in all frequency ranges by Random Walk, which is nearly optimal. Column 2 shows that

the estimates of yt based on Trigonometric Regression overshoot V ar(yt), sometimes by a great

deal and that it performs worse on this dimension than either Random Walk or Optimal. The

relative performance of Trigonometric Regression is particularly poor in the lower frequencies. Col-

umn 3 shows the dynamic cross correlations between ŷt and yt when the former are computed by

Trigonometric Regression. The evidence suggests that there is little asymmetry in the band pass

filter approximation implied by Trigonometric Regression, but there appears to be a substantial

departure from covariance-stationarity. The correlations in the tails of the data set are notably

smaller than they are in the middle.

Although Trigonometric Regression appears in Figure 7 to perform substantially worse than

Random Walk, for some purposes the poor performance may not be quantitatively important. For

example, in Christiano and Fitzgerald (1999), we report that, for standard business cycle statistics,
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Trigonometric Regression produces results quite similar to Random Walk.

7. Conclusion

The filtering methodology outlined here is not for everybody. For analysts interested exclu-

sively in statistics based on business cycle and higher frequency components of quarterly data, the

HP filter appears to do just fine. However, researchers may prefer to use the band pass filter if they

are also interested in other frequency components of the data; in daily, weekly, monthly, or annual

data; or in real-time trend estimates. The band pass filter offers a simple, consistent framework

doing what the HP filter is good at, and it can also handle these other tasks.

This paper derives the optimal approximation to the band pass filter. We compare this

approximation with several alternatives, including the BK, Trigonometric Regression, and Random

Walk filters. We find that for applications that involve the business cycle and higher frequency

components of the data, which of these methods is applied makes little difference. However, for lower

frequency components of the data Random Walk outperforms BK and Trigonometric Regression

and is nearly optimal. We establish this for time series representations that fit U.S. macroeconomic

data on inflation, output, interest rates, and unemployment. An advantage of Random Walk

over the optimal approximation is that it is very easy to implement. The latter requires first

estimating a time series model for the data to be filtered. These considerations are the basis for our

recommendation that Random Walk be the band pass filter approximation used for macroeconomic

data.

Since the case for Random Walk relies on its superior performance in lower frequencies, two

important questions are, Should we care about lower frequencies? Can we measure them reliably?

We have presented an empirical example which suggests that the answer to both questions is yes.
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APPENDIX

Here, we briefly derive the first-order condition, (16), associated with the optimization

problem in (15). It is convenient to rewrite the optimization criterion as follows:

min
bj ,j=p−1,...,−f

Z π

−π
δ̃(ω)δ̃(−ω)g(e−iω)dω

where

δ̃(ω) = B̃(e−iω)− b(e−iω)

and B̃, b are defined in the text. Straightforward differentiation yields the following first-order

conditions: Z π

−π

h
δ̃(ω)eiωj + δ̃(−ω)e−iωj

i
g(e−iω)dω = 0, j = p− 1, ...,−f

or

Z π

−π

h
B̃(e−iω)eiωj + B̃(eiω)e−iωj

i
g(e−iω)dω =

Z π

−π

h
b(e−iω)eiωj + b(eiω)e−iωj

i
g(e−iω)dω(A1)

j = p− 1, ...,−f. To see that this reduces to (15), we make use of the well-known result:

2

Z π

−π
f(ω)dω =

Z π

−π
[f(ω) + f(−ω)] dω.
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NOTES

1The authors thank Eduard Pelz and Jeff Schwarz for their outstanding research assistance.

They are grateful for the comments of an anonymous referee. Christiano is grateful to the National

Bureau of Economic Research for a National Science Foundation grant. The views expressed herein

are those of the authors and not necessarily those of the Federal Reserve Bank of Cleveland or

Minneapolis or the Federal Reserve System.

2For early work that explores this hypothesis using tools closely related to those explored in

this paper, see Engle (1974).

3For a formal analysis of the spectral representation theorem, see Cramer and Leadbetter

(1967) and Lippi (2001). A simplified exposition appears in Christiano and Fitzgerald (1998,

Appendix).

4Our formulas assume there is no drift in the random walk. If there is a drift in the raw data,

we assume it has been removed prior to analysis. For more details, see footnote 13.

5Our findings are consistent with the results of Backus and Kehoe (1992, Table 8). However,

they do not discuss the money-inflation relationship in the text, and the results in their table

pertain only to business cycle frequencies.

6For other interesting analyses, see King and Watson (1994), Baxter (1994), Hornstein (1998),

and Stock and Watson (1999).

7If the data are quarterly and pl = 6 and pu = 32, then yt is the component of xt with

periodicities between 1.5 and 8 years.

8For a simple time domain proof of the proposition that (2) is the solution to (1) when xt is

generated by a random walk, see footnote 17.
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9In particular, B̃T−t is the sum of the Bj ’s over j = T − t, T − t+ 1, ..., and B̃t−1 is the sum

of the Bj ’s over j = t− 1, t, .... Exploiting the fact that B0 + 2P∞
i=1Bi = 0,

B̃T−t = −1
2
B0 −

T−t−1X
j=1

Bj , for t = 3, ..., T − 2.

Also, B̃t−1 solves

0 = B0 +B1 + ...+BT−1−t + B̃T−t +B1 + ...+Bt−2 + B̃t−1.

10Here B̃T−1 = −12B0 −
PT−2
j=1 Bj .

11The weights on xt, xt±1, ..., xt±(p−1) are B0, ..., Bp−1, respectively. The weight on xt−p and

xt+p, B̃p, is obtained using

B̃p = −1
2

B0 + 2 p−1X
j=1

Bj

 .
We can easily verify that in this case, there is no need to drift-adjust the raw data because the

output of the formula is invariant to drift. It is invariant because the optimal symmetric filter when

the raw data are a random walk has two unit roots. The first makes xt stationary, and the second

eliminates any drift. In contrast, the output of the potentially asymmetric filter just discussed in

the text is not invarient to drift. When p 6= f, that filter has just one unit root.
12Software for computing the filters in GAUSS, MATLAB, STATA, EVIEWS, and RATS can

be obtained from the authors’ homepages. The default option in this software takes as input a

raw time series, removes its drift, and then filters it using our recommended Random Walk filter.

Alternatively, one can input a time series belonging to the class considered below and in Christiano

and Fitzgerald (1999), and the software returns the relevant optimal filter approximation.
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13Removing this mean corresponds to drift-adjusting the xt process. We elaborate on this

briefly here. Suppose the raw data are denoted wt and that they have the representation wt =

µ + wt−1 + ut, where ut is a zero-mean, covariance-stationary process. Then wt can equivalently

be expressed as wt = (t − j)µ + xt, where xt = xt−1 + ut for all t and j is a fixed integer, which

we normalize to unity for concreteness. The variable, xt, is the drift-adjusted version of wt, and it

can be recovered from observations on wt as follows: x1 = w1, x2 = w2− µ, x3 = w3 − 2µ, .... In

practice, µ must be estimated, with µ̂ = (wT − w1)/(T − 1). Though we set j = 1, we can readily

confirm that the output of our filter is invariant to the value of j chosen. In sum, in the unit root

case, we assume xt is the result of removing a trend line from the raw data, where the slope of the

line is the drift in the raw data and the level is arbitrary.

14The notion that x̃t and yt are orthogonal is problematic in the case where xt has one (or

more) unit roots. In this case, we interpret the orthogonality property as applying to an arbitrarily

small perturbation of the xt process in which the unit root is replaced by a root that is inside the

unit circle.

15For a closely related discussion, see Sims (1972).

16If T is odd, then there is one filter that is symmetric, namely, the one associated with date

t = (T + 1) /2.

17The solution to the random walk case can be established with a simple time-domain argu-

ment. The problem is that not all the observations on xt are available to evaluate yt in (6). The

missing data are the xt’s before the beginning and after the end of the data set. The time-domain

version of the least squares approach taken in this paper replaces the missing observations with

the least squares optimal guess based on the observed data. In the Random Walk case, the best

estimate of each presample observation is just the first data point, and the best estimate of each
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postsample observation is the last data point. The weights in the Random Walk approximation

filter are computed by pursuing the implications of this observation. This time-domain strategy for

solving our problem corresponds to the one implemented by Stock and Watson (1999) in a business

cycle context and by Geweke (1978) and Wallis (1983) in a seasonal adjustment context.

18It is straightforward to adapt the argument to accommodate larger q. It is also straightfor-

ward to accommodate the case in which xt−xt−1 is a mixed autoregressive moving-average process.

We choose our specification because it seems adequate for standard macroeconomic time series.

19Here, and elsewhere, we make use of the following well-known result:

Z π

−π
eiωhdω = 0, for h = ±1, ± 2, ...

= 2π, for h = 0.

20The second equality uses

1

1− e−iω +
1

1− eiω =
1− eiω + 1− e−iω
(1− e−iω) (1− eiω) = 1.

21In this case, θ(z) = 1− (1− η)z, η > 0, η small. In later sections, we set η = 0.01.

22This is similar to results obtained for the HP filter, which is also nonstationary and asym-

metric. Christiano and den Haan (1996) show that, apart from data at the very beginning and end

of the data set, the degree of nonstationarity in this filter is quantitatively small.

23For a detailed discussion of the link between asymmetry in B̂p,f and asymmetry in the

dynamic cross correlation between yt and ŷt, see Christiano and Fitzgerald (1999, p. 14).

24Formally, these statistics are defined as follows. Suppose [xt, zt] is a vector stochastic process,
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and consider the various realizations of this stochastic process at date t. Then corrt(xt, zt) is the

correlation between xt and zt across realizations at t. Similarly, V art(zt) is the variance, across

realizations, at t. Since yt is covariance-stationary, V art(yt) is the same for all t, and so we drop

the t subscript on the variance operator in this case. For details about how we computed these

statistics, see Christiano and Fitzgerald (1999).

25This footnote discusses the p-values that appear in Table 2. The values that appear in

parentheses were computed using a bootstrap procedure under the null hypothesis that inflation

and money growth are unrelated. We fit separate q-lag scalar autoregressive representations to

inflation (first difference, log CPI) and to money growth (first difference, log M2). We use the

fitted disturbances and actual historical initial conditions to simulate 2,000 artificial data sets on

inflation and money growth. For both the early and late samples, the amount of data simulated

corresponds to the amount of data in the sample. For pre-1960 annual data, q = 3; for post-1960

monthly data, q = 12. In each artificial data set, we compute correlations between the various

frequency components, using the same procedure applied in the actual data. In the data and the

simulations, we dropped the first and last three years of the filtered data before computing sample

correlations. The numbers in parentheses in Table 2 are the frequency of times that the simulated

correlation is greater (less) than the positive (negative) estimated correlation.

The p-values in square brackets are the fraction of times, in 2,000 artificial post-1960 data sets

generated by a pre-1960 data-generating mechanism (DGM), that the contemporaneous correlation

between the indicated frequency components of inflation and money growth exceeds, in absolute

value, the corresponding post-1960 empirical estimate. The DGM used in these simulations is a

3-lag, bivariate vector autoregression fit to pre-1960 data.

26See Singleton (1988) and King and Rebelo (1993). A high pass filter is a band pass filter
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with pl = 2. That is, it permits all frequencies above a specified one (i.e., the one associated with

period pu > 2) to pass.

27The perspective adopted in this paper does suggest one strategy for designing the HP filter to

isolate alternative frequency bands: optimize, by choice of λ, the version of (11) with Bp,f replaced

by the HP filter. This strategy produces a value of λ that is time-dependent and dependent upon

the properties of the true time series representation. We doubt that this strategy for filtering the

data is a good one. First, implementing it is likely to be computationally burdensome. Second, as

this paper shows, identifying the optimal band pass filter approximation is straightforward.

28In part, this is due to the fact that there is not complete agreement as to what precisely

one is trying to extract from the data with the HP filter. Some (Prescott 1986, Marcet and Ravn

2000) say the filter simply draws a smooth line, others (King and Rebelo 1993, Ravn and Uhlig

1997) say it approximates a high pass filter, and others (Hodrick and Prescott 1997) say it extracts

the trend component in a particular trend-cycle statistical model of the data. Given this lack of

agreement, there is no natural, single way to adapt the HP filter for monthly or annual data. For

example, Ravn and Uhlig (1997) and Marcet and Ravn (2000) address this problem and come up

with different solutions.

29Early applications of this filter can be found in Baxter (1994), King and Watson (1994), and

King, Stock, and Watson (1995).

30This can be seen in the 2,1 entry in Figure 3. Although that entry reports corrt(ŷt, yt), we

know that when ŷt is the solution to a projection problem, as it is for the Optimal Fixed filter,

then corrt(ŷt, yt) = [V art(ŷt)/V ar(yt)]
1/2 .

31The HP filter parameter, λ, is set to 1,600, as is typical in applications using quarterly data.
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32The time series model estimated using the unemployment rate, xt, is

(1− L)xt = εt + 0.65εt−1 + 0.48εt−2 + 0.41εt−3, σε = 0.27.

This variable is measured in percentage points. The time series model estimated using log GDP

data is

(1− L)xt = εt + 0.25εt−1 + 0.16εt−2 + 0.10εt−3 + 0.12εt−4, σε = 0.0088.

The time series model estimated using log(Pt/Pt−1), where Pt is the CPI, is

(1− L)xt = εt − 0.23εt−1 − 0.27εt−2 + 0.32εt−3, σε = 0.0042.

33We have abstracted from several real-time issues which could make the HP, Optimal, and

RandomWalk filters seem even worse at estimating yt in real time. We abstract from possible breaks

in the underlying time series representation and from data revisions. A more complete analysis

would also take these factors into account in characterizing the accuracy of real time estimates

of the business cycle and higher frequency components of the data. For further discussion, see

Orphanides (1999) and Orphanides and van Norden (1999).

34When ŷt solves (11), Rt and corrt(ŷt, yt) have a monotone relationship. Neither filter dis-

cussed in this paragraph satisfies this condition.

35See Orphanides (1999), who argues that the output gap plays a role in the Federal Reserve’s

monetary policy strategy.

36Consistent with this interpretation, Orphanides and van Norden (1999) treat the output

gap and the business cycle as synonyms. For example, according to them (p. 1), “The difference
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between [actual output and potential output] is commonly referred to as the business cycle or the

output gap [italics added].”

37In the case of the Random Walk filter, ŷT is computed using the one-sided filter, (4).

38The trend implicit in ŷt is xt− ŷt. In the text, we follow convention in adopting the variance

as the measure of distance between two random variables. Thus, V art(ŷt) is the distance between

the trend implicit in ŷt and the raw data, xt.

39The same pattern for V art(ŷt) is reported in Christiano and den Haan (1996, Figure 3, p.

316).

40These are counterexamples to the conjectures by Barrell and Sefton (1995, p. 68) and

St-Amant and van Norden (1997, p. 11).

41These observations on the HP filter complement those obtained using different methods by

others, including Laxton and Tetlow (1992), St-Amant and van Norden (1997), and Orphanides

(1999).

42The subscript convention adopted here is slightly inconsistent with the convention used

elsewhere in the paper. Before, the subscript on V ar indicated the specific date that the variance

corresponds to. Here, the subscript refers to the data set used to construct ŷ160. We adopt this

notation to avoid proliferating notation and hope that it will not lead to confusion.

43Our results for the unemployment gap can be compared with those reported, using a different

conceptual and econometric framework, by Staiger, Stock, and Watson (1997). Their estimated

standard deviations of this gap range from 0.46 to 1.25 percentage points, depending on the data

used in the analysis. Because (as they emphasize) this range is so wide, it is not surprising that

our estimates fall inside it.

44We assume T is even. Also, J is the set of integers between j1 and j2, where j1 = T/pu and
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j2 = T/pl. The representation of ŷt given in the text, while convenient for our purposes, is not the

conventional one. The conventional representation is based on the following relation:

ŷt =
X
j∈J

{aj cos(ωjt) + bj sin(ωjt)}

where the aj ’s and bj ’s are coefficients computed by an ordinary least squares regression of xt on

the indicated sine and cosine functions. The regression coefficients are

aj =


2
T

PT
t=1 cos(ωjt)xt, j = 1, ..., T/2− 1

1
T

PT
t=1 cos(πt)xt, j = T/2,

, bj =


2
T

PT
t=1 sin(ωjt)xt, j = 1, ..., T/2− 1

1
T

PT
t=1 xt, j = T/2

.

The expression in the text is obtained by collecting terms in xt and making use of the trigonometric

identity, cos(x) cos(y) + sin(x) sin(y) = cos(x− y).
45To see that Bt(1) = 0 when T/2 /∈ J, simply evaluate the sum of the coefficients on

x1, x2, ..., xT for each t :

1

T

X
j∈J

t−TX
l=t−1

2 cos (ωjl) =
1

T

X
j∈J

t−TX
l=t−1

h
eiωj l + e−iωj l

i
=
1

T

X
j∈J

"
e−iωj(t−1)

1− eiωjT
1− eiωj + e

iωj(t−1) 1− e−iωjT
1− e−iωj

#
= 0

because 1− eiωjT = 1− e−iωjT = 1− cos(2πj) + sin(2πj) = 1 for all integers, j.

When T/2 ∈ J, the expression for Bt(1) includes Pt−1
l=t−T

n
1
T cos (π(t− l)) cos(πt)

o
. This

expression is simply the sum of an even number of 1’s and −1’s, so it sums to 0.
46When T is even, there cannot be an exact second unit root since it rules out the existence

of a date precisely in the middle of the data set. By Bt(L) having n unit roots, we mean that it

can be expressed as B̃t(L)(1− L)n, where B̃t(L) is a finite-ordered polynomial. The discussion of
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two unit roots in the text exploits the fact that the roots of a symmetric polynomial come in pairs.
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Table 1: Band Pass Filter Approximation Procedures

Procedure Definition

Optimal Optimal

Random Walk Optimal, assuming random walk xt, (2)-(3)

Optimal, Symmetric Optimal, subject to p = f

Optimal, Fixed Optimal, subject to p = f = 36

Random Walk, Fixed Optimal, subject to p = f = 36, assuming random walk xt

Notes: (i) The various procedures optimize (1) subject to the indicated constraints. Where the time series

representation of xt is not indicated, it will be clear from the context. (ii) We use p = 36 because this is

recommended by BK.



Table 2: Money Growth-Inflation Correlations

Sample Business Cycle Frequencies 8-20 years 20-40 years

1900-1960 0.45 (0.00) 0.59 (0.04) 0.95 (0.01)

1961-1997 −0.72 (0.00) [0.00] −0.77 (0.02)[0.00] 0.90 (0.10)[0.37]

Notes: (i) Contemporaneous correlation between indicated two variables, over indicated sample periods

and frequencies. (ii) Numbers in parentheses are p-values, in decimals, against the null hypothesis of zero

correlation at all frequencies. (iii) Numbers in square brackets are p-values, in decimals, against the null

hypothesis that the post-1960 correlations are the same as the pre-1960 correlations. For details, see footnote

25.


