Basics of Econometrics

Ordinary least-squares method (OLS)

Linear regression model:

$$Y_t = \beta_1 + \beta_2 X_t + \beta_3 Z_t + \epsilon_t$$

where Y_t is dependent variable (explained variable), X_t and Z_t are independent variables (explanatory variables) and ϵ_t is error term. β_1 is constant term, β_2 , β_3 are parameters.

Assumptions:

- Relationship between Y_t and X_t , Z_t is linear, given by equation above.
- The X_t and Z_t are nonstochasite variables. Error term ϵ_t is independent of the X_t and therefore uncorrelated $E(X_t \epsilon_t) = 0$. The same for Z_t .
- No exact linear relationship exists between (two or more) independent variables; there is no (multi)colinearity $E(X_t Z_t) = 0$.
- The error has zero expected value for all variables $E(\epsilon_t) = 0$
- The error term has constant variance for all variables $E(\epsilon_t^2) = \sigma^2$, it is homoscedastic.
- Errors corresponding to different observations are independent and therefore uncorrelated $E(\epsilon_t \epsilon_s) = 0$ for all $t \neq s$
- The error term is normally distributed.

Matrix formulation:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where the vectors and matrixes has following dimension: **Y** is $N \times 1$, **X** is $N \times k$, β is $k \times 1$ and ϵ is $N \times 1$, where k is number of independent variables plus 1, N is number of observations. The matrix **X** is called *design matrix*.

Estimation

Our objective is to find a vector of parameters $\hat{\boldsymbol{\beta}}$ which minimize

$$\sum_{t=1}^{N} \hat{oldsymbol{\epsilon}}_t^2 = \hat{oldsymbol{\epsilon}}' \hat{oldsymbol{\epsilon}}$$

where

$$\hat{\boldsymbol{\epsilon}} = \mathbf{Y} - \hat{\mathbf{Y}}$$

and

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

 $\hat{\boldsymbol{\beta}}$ is estimated value of $\boldsymbol{\beta}$, $\hat{\boldsymbol{\epsilon}}$ represents vector of *regressions residuals*, $\hat{\mathbf{Y}}$ represents vector of fitted values of \mathbf{Y} . The BLUE (Best Linear Unbiased Estimator) is given by:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y}).$$

Verification

We should test all assumptions of this method – homoscedasticity and independence of residuals, their distribution, (multi)colinearity of explanatory variables etc. but it takes lot of time and effort. For our purposes it will be sufficient to test only **statistical significance** of parameters.

Statistical test of a hypothesis associated with a regression coefficients (parameters) is based on the *t*-distribution. We want to test the null hypothesis $\beta = 0$ or equivalently that there is no relationship between variables X_t and Y_t . In this case the *t*-statistic is given by

$$t_i = \frac{\hat{\beta}_i}{s_{\hat{\beta}_i}}$$

Standard error of the estimated coefficients $s_{\hat{\beta}_i}$ is given by

$$s_{\hat{\beta}_i} = \sqrt{s^2 (\mathbf{X}' \mathbf{X})_{ii}^{-1}},$$

where $(\mathbf{X}'\mathbf{X})_{ii}^{-1}$ are diagonal elements of $(\mathbf{X}'\mathbf{X})^{-1}$ and s^2 is residual variance¹

$$s^2 = \frac{\hat{\epsilon}'\hat{\epsilon}}{N-k}$$

¹Standard error of the regression is $s = \sqrt{s^2}$.

We compare t-statistic with the critical value of t-distribution (t_{crit}) . It is defined at significance level α , with N - k degrees of freedom, also written as $t_{\alpha/2}(N - k)$.² For large samples and 5 percent significance level $t_{crit} = 1.96$.

If the t-statistic is greater, in absolute value, than the critical value t_{crit}

$$|t_i| > t_{crit}$$

we reject the null hypothesis ($\hat{\beta}_i = 0$) in favor of alternative hypothesis that the parameter is significantly different from zero.

Simply said, if this condition is fulfiled, the parameter $\hat{\beta}_i$ is statistically significant and the independent variable (X_t) has some explanatory ability in the regression equation; there exists some linear relationship between X_t and Y_t .

Futher readings

Pindyck, R. S., Rubinfeld, D. L. *Econometric Models and Economic Forecasts*, Irwin/McGraw-Hill, Fourth edition, 1998, Chapter 3 and 4, STM-126.

 $^{^{2}\}alpha$ is devided by two, because it is two-tailed test.