Elementary statistics

Expected values

Mean or expected value of a random variable X is weighted average of the possible outcomes

$$
\mu_{X}=E\left(X_{t}\right)=p_{1} X_{1}+p_{2} X_{2}+\ldots+p_{N} X_{N}=\sum_{i=1}^{N} p_{i} X_{i}
$$

where p_{i} is the probability that X_{i} occurs, $\sum p_{i}=1$ and $E($.$) is the expectations$ operator. The expected value should be distinguished from the sample mean which tells us the average of the outcomes obtained in a sample in which a number of observations are chosen from the underlying probability distribution. We denote sample mean of a set of outcomes on X by \bar{X} (see next section).

The variance provides a mesures of the spread around the mean

$$
\operatorname{var}(X)=\sigma_{X}^{2}=\sum_{i=1}^{N} p_{i}\left[X_{i}-E(X)\right]^{2}
$$

or equivalently

$$
\sigma_{X}^{2}=E[X-E(X)]^{2}
$$

The square root of the variance is called the standard deviation

$$
\operatorname{std}(X)=\sqrt{\sigma_{X}^{2}}=\sigma_{X}
$$

Covariance is a measure of the linear association between X and Y

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =\sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} p_{j}\left(X_{i}-E(X)\right)\left(Y_{j}-E(Y)\right)
\end{aligned}
$$

Correlation coefficient measures also linear relationship between X and Y but unlike covarince it is normalized and is scale-free. It always lie between -1 and +1 .

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

where σ_{X} and σ_{Y} are standard deviations of X and Y.

Estimators of Mean, Variance and Covariance

Usually, we make inferences about the above mentioned characteristics from the sample (we take a sample of N data points). We cannot know the true mean and variance of a random variable, or the true covariance between two random variables, we use the sample information to obtaing the best possible estimates. The estimator \bar{X} for random variable X with mean μ_{X} is defined by

$$
\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

\bar{X} is a random variable whose values will vary from sample to sample even thought the corresponding (true mean) μ_{X} remains unchanged.
The (unbiased) estimator for variance

$$
\widehat{\operatorname{var}}(X)=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

The sample variance is distinguished from the true variance by placin a hat hat (${ }^{\wedge}$) above the cov.
The (unbiased) estimator for covariance

$$
\widehat{\operatorname{cov}}(X Y) \frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{j}-\bar{Y}\right)
$$

The sample correlation coefficient is

$$
r_{X Y}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{j}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

or

$$
r_{X Y}=\frac{\widehat{\operatorname{cov}}(X Y)}{\sqrt{\widehat{\operatorname{var}}(X) \widehat{\operatorname{var}}(Y)}}
$$

Some useful properties of the expectations operators

Rule 1

$$
E(a X+b)=a E(X)+b
$$

where X is a random variable and a and b are constants

Rule 2

$$
E(a X)^{2}=a^{2} E\left(X^{2}\right)
$$

Rule 3

$$
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)
$$

Rule 4

If X and Y are random variables then

$$
E(X+Y)=E(X)+E(Y)
$$

Rule 5

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)
$$

Rule 6

If X and Y are independent then

$$
E(X Y)=E(X) E(Y)
$$

Rule 7

If X and Y are independent then

$$
\operatorname{cov}(X Y)=0
$$

References

Pindyck, R. S., Rubinfeld, D. L. Econometric Models and Economic Forecasts, Irwin/McGrawHill, Fourth edition, 1998, Chapter 1 and 2, STM-126.

